Cross-Lingual Adaptation Using Structural Correspondence Learning

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Structural Correspondence Learning for Domain Adaptation

We introduce a neural network model that marries together ideas from two prominent strands of research on domain adaptation through representation learning: structural correspondence learning (SCL, (Blitzer et al., 2006)) and autoencoder neural networks (NNs). Our model is a three-layer NN that learns to encode the non-pivot features of an input example into a lowdimensional representation, so ...

متن کامل

Domain Adaptation with Structural Correspondence Learning

Discriminative learning methods are widely used in natural language processing. These methods work best when their training and test data are drawn from the same distribution. For many NLP tasks, however, we are confronted with new domains in which labeled data is scarce or non-existent. In such cases, we seek to adapt existing models from a resourcerich source domain to a resource-poor target ...

متن کامل

Cross-Language Text Classification Using Structural Correspondence Learning

We present a new approach to crosslanguage text classification that builds on structural correspondence learning, a recently proposed theory for domain adaptation. The approach uses unlabeled documents, along with a simple word translation oracle, in order to induce taskspecific, cross-lingual word correspondences. We report on analyses that reveal quantitative insights about the use of unlabel...

متن کامل

Structural Correspondence Learning for Cross-Lingual Sentiment Classification with One-to-Many Mappings

Structural correspondence learning (SCL) is an effective method for cross-lingual sentiment classification. This approach uses unlabeled documents along with a word translation oracle to automatically induce task specific, cross-lingual correspondences. It transfers knowledge through identifying important features, i.e., pivot features. For simplicity, however, it assumes that the word translat...

متن کامل

Language model adaptation using cross-lingual information

The success of statistical language modeling techniques is crucially dependent on the availability of a large amount training text. For a language in which such large text collections are not available, methods have recently been proposed to take advantage of a resource-rich language, together with cross-lingual information retrieval and machine translation, to sharpen language models for the r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on Intelligent Systems and Technology

سال: 2011

ISSN: 2157-6904,2157-6912

DOI: 10.1145/2036264.2036277